DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes.

نویسندگان

  • André Plagens
  • Hagen Richter
  • Emmanuelle Charpentier
  • Lennart Randau
چکیده

The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) adaptive immune systems use small guide RNAs, the CRISPR RNAs (crRNAs), to mark foreign genetic material, e.g. viral nucleic acids, for degradation. Archaea and bacteria encode a large variety of Cas proteins that bind crRNA molecules and build active ribonucleoprotein surveillance complexes. The evolution of CRISPR-Cas systems has resulted in a diversification of cas genes and a classification of the systems into three types and additional subtypes characterized by distinct surveillance and interfering complexes. Recent crystallographic and biochemical advances have revealed detailed insights into the assembly and DNA/RNA targeting mechanisms of the various complexes. Here, we review our knowledge on the molecular mechanism involved in the DNA and RNA interference stages of type I (Cascade: CRISPR-associated complex for antiviral defense), type II (Cas9) and type III (Csm, Cmr) CRISPR-Cas systems. We further highlight recently reported structural and mechanistic themes shared among these systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CRISPR-Cas: the effective immune systems in the prokaryotes

Approximately all sequenced archaeal and half of eubacterial genomes have some sort of adaptive immune system, which enables them to target and cleave invading foreign genetic elements by an RNAi-like pathway. CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) systems consist of the CRISPR loci with multiple copies of a short repeat sequence separa...

متن کامل

Cmr1 enables efficient RNA and DNA interference of a III-B CRISPR–Cas system by binding to target RNA and crRNA

CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems provide adaptive immunity against invasive nucleic acids guided by CRISPR RNAs (crRNAs) in archaea and bacteria. Type III CRISPR-Cas effector complexes show RNA cleavage and RNA-activated DNA cleavage activity, representing the only known system of dual nucleic acid interference. Here, we investigat...

متن کامل

An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference

CRISPR-Cas systems provide a small RNA-based mechanism to defend against invasive genetic elements in archaea and bacteria. To investigate the in vivo mechanism of RNA interference by two type III-B systems (Cmr-α and Cmr-β) in Sulfolobus islandicus, a genetic assay was developed using plasmids carrying an artificial mini-CRISPR (AC) locus with a single spacer. After pAC plasmids were introduce...

متن کامل

CRISPR interference: a structural perspective

CRISPR (cluster of regularly interspaced palindromic repeats) is a prokaryotic adaptive defence system, providing immunity against mobile genetic elements such as viruses. Genomically encoded crRNA (CRISPR RNA) is used by Cas (CRISPR-associated) proteins to target and subsequently degrade nucleic acids of invading entities in a sequence-dependent manner. The process is known as 'interference'. ...

متن کامل

Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system

CRISPR-Cas is an adaptive prokaryotic immune system, providing protection against viruses and other mobile genetic elements. In type I and type III CRISPR-Cas systems, CRISPR RNA (crRNA) is generated by cleavage of a primary transcript by the Cas6 endonuclease and loaded into multisubunit surveillance/effector complexes, allowing homology-directed detection and cleavage of invading elements. Hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology reviews

دوره 39 3  شماره 

صفحات  -

تاریخ انتشار 2015